

Sydney Kim

University of Hawai'i at Mānoa Mentor: Greg Barrick Canada-France-Hawaii Telescope

TELESCOPE MIRROR

Dust around the telescope can settle on the mirror.

Photo: Grant Matsushige

LIGHT SCATTERING

Dust particles in the telescope scatter light, reducing image quality.

Use particle counters to detect the atmospheric conditions that lead to high levels of dust.

Photos: Sensirion (top), OKdo (bottom)

Create a **case** that will allow the particle counting system to collect accurate data.

 $\bigcirc \bigcirc$

PARTICLE COUNTING SYSTEM ENCLOSURE

- Hold particle counter + raspberry pi in place
- Allow access to necessary inputs/outputs
- Particle counter + raspberry pi should be removable
- Set up at various locations around CFHT dome

PROJECT STAGES

00

Produce design and prepare on Solidworks. Print using PLA (polylactic acid) on a 3D printer. Assemble the case with the particle sensing system. Mount within the telescope and conduct a test run.

 $\bigcirc \bigcirc$

DESIGN PROCESS

Identify requirements

Consider production constraints Conduct necessary test and trials

DESIGN PROCESS

IDENTIFY REQUIREMENTS

Contain particle counter and raspberry pi, removability, different surfaces

CONSIDER PRODUCTION CONSTRAINTS

Printing time, material limitations, attainable shapes

CONDUCT NECESSARY TESTS AND TRIALS

Hole position, checking the fit, withstanding weight

DESIGN REVIEW

Review and feedback from the instrumentation group

DESIGN FEATURES

THREE COMPONENTS

JIGSAW SHAPE

MAGNET/SCREW ALLOWANCE

PRINTER ASSEMBLY

DESIGN (BASE)

Openings for power and Ethernet

Threaded inserts for Raspberry Pi

Magnets are screwed to case

DESIGN (BASE)

•

•

٠

Passage for hook-andloop wrap

Magnets for attachment

DESIGN (BASE)

•

•

Through holes for wall screws

DESIGN (MID)

Groove for hook-andloop wrap

Pegs for puzzlepiece fit

DESIGN (FULL)

Hook-andloop keeps layers together

TESTING FOR INTERFERENCE

 $\bigcirc \bigcirc$

Photo: Greg Barrick

TESTING

18

TESTING FOR INTERFERENCE

TESTING

INSTALLING

INSTALLING

DATA FROM SENSORS

$\bigcirc \bigcirc$

Dome Counts:

Particle Size	Mezz South	Dome Slit	Obs Floor E	Obs Floor N	PM Cell E	PM Cell W
0.3-0.5 um (#/cm^3)	2.6193	2.2803	3.3440	3.8339	2.4152	3.0668
0.5-1.0 um (#/cm^3)	0.4187	0.3955	0.5866	0.6662	0.4248	0.5300
1.0-2.5 um (#/cm^3)	0.0098	0.0104	0.0193	0.0183	0.0147	0.0127
2.5-4.0 um (#/cm^3)	0.0011	0.0011	0.0025	0.0021	0.0020	0.0013
4.0-10.0 um (#/cm^3)	0.0006	0.0004	0.0008	0.0008	0.0006	0.0005

Live data is currently accessible to all of CFH.

00

CFHT now has cases for a ::: working particle counting system mounted on and around the telescope.

THANK YOU!

Greg Barrick Canada-France-Hawaii Telescope Akamai Workforce Initiative

26

• •

